
COURSE DESCRIPTION CARD - SYLLABUS

Course name

   Distributed Computing  

Course

Field of study

  Computer Science   

Area of study (specialization)

     

Level of study

First-cycle studiesForm of study

part-time

Year/Semester

     

Profile of study

Course offered in

     

Requirements

Number of hours

Lecture

 16    

Tutorials

     

Laboratory classes

 16    

Projects/seminars

     

Other (e.g. online)

     

Number of credit points

 3    

Lecturers

Responsible for the course/lecturer:

 Prof. dr hab. Jerzy Brzeziński

 email: Jerzy.Brzezinski@cs.put.poznan.pl

  tel. (0-61) 665 2370

 Institute of Computing Science

Faculty of Computing and Telecommunications

 ul. Piotrowo 2, 60-965 Poznań

Arkadiusz Danilecki, PhD

1

mailto:Jerzy.Brzezinski@cs.put.poznan.pl

email: arkadiusz.danilecki@cs.put.poznan.pl

tel. tel: (0-61) 665-2964

Institute of Computing Science

Faculty of Computing and Telecommunications

 ul. Piotrowo 2, 60-965 Poznań

Responsible for the course/lecturer:

     

Prerequisites

 Students starting this course should have a basic knowledge of algorithms and programming.
Students should be able to solve basic problems in the range of design, checking the
correctness and implementing algorithms in the C/C++ programming language and the ability to
acquire information from the indicated sources. They should be able to understand threads and
problems resulting from multithread programming, especially related to mutual exclusion,
deadlock and starvation prevention. They should be able to understand the concepts of
computatonal complexity (best and worst case).

Students should have a necessary abilities needed to use Linux/Unix operating systems,
including ability to write and compile programs.

Students should also understand the necessity to broaden own competences/be ready to
cooperate within the team. In addition, in the field of social competence, the student must
present such attitudes as honesty, responsibility, perseverance, cognitive curiosity, creativity,
personal culture, respect for other people.   

2

    

Course objective

1. To teach students basic knowledge about distinct characteristics of distributed systems, their
fundamental differences from centralised systems, their construction, calculating the
computational and communication complexity for distributed algorithms, and proving/verifying
their correctness.

2. Familiarizing students with trends in distributed computing, basic issues appearing in
construction of the distributed systems, problems appearing during their work and fulfillment of
their typical tasks, as well as with typical solutions to the problems.

3. Enabling students to acquire necessary abilities required by distributed application
development and to teach them chosen tools for such development

4. Developing the skills necessary to solving basic problems appearing in distrubuted computing
domain

5. Fostering the skills necessary for team work, proper programming habits including code
documentation

6. Teaching how to optimize the code by picking proper tools, algorithms and implementation
methods

Course-related learning outcomes

Knowledge

   Students have expanded and deep knowledge in the domain of the distributed algorithms and their

computational and communication complexity (K1st_W4)

 Students know about trends in distributed computing, new methods, tools and algorithms especially as

related to distributed computing (K1st_W5)

 Students know basic methods, techniques and tools helping them to solve simple tasks during

developoment of distributed application (K1st_W7)

 Students have expanded and deep knowledge in the domain of distributed systems architecture

(K1st_W4)  

3

Skills

  Students can analyse computational and communication complexity of distributed algorithms

(K1st_U8)

 Students can use proper methods (analytical, simulation, experimental) for solving of specific problems

from distributed computing (K1st_U4)

 Students can analyse and evaluate distributed algorithms. In particular, they can participate in

inspection of distributed systems and evaluate them from the point of view of extra-functional

requirements. They can propose tests for functional requirements (K1st_U9)

 Students can design and implement a distributed algorithm, choosing proper language for the task and

using proper techniques, methods and tools (K1st_U10)

 Students can design and implement distributed algorithms using chosen popular tool (K1st_U11)

 Students can work in groups and are able to pick proper priorities for implementation of particular task,

as demanded by them or their peers (K1st_U18)      

Social competences

 Students understand that the knowledge and their skills might quickly become outdated (K1st_K1)

 Students knows examples of failed or faulty distributed systemes and understands the reasons of their

failures, causing significant social and financial losses (K1st_K2)   

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

  Formative assesment:

 a) For lectures:

 - based on answers to questions related to subjects covered during previous lectures

 b) For laboratory classes:

- based on assesment of progress of implementions of assigned tasks.

Total Assesment: Verification of assumed learning objectives is based on

- final exam, where students are given four problem questions based on issues covered during the

lectures

- realisation of a group task: designing and implementing an algorithm solving chosen distributed

computing problem using MPI library (in any programming language), usually based on mutual

exclusion. The final grade is given by taking into account individual contribution, the quality and novelty

of the solution both on theoretical (algorithm design) and practical (implementation) level. The

assesment includes evaluation of the project report and final discussion where students are require to

explain their design and implementation choices.

4

Additional points might be given for:

- particular insights given during the classes,

- active participation in group discussions,

- covering additional aspects of discussed problems,

- giving helpful remarks related to the teaching materials,

- exceptional ability to use acquired knowledge to solve problems,

 - pointing out perceptual difficulties enabling ongoing improvement of the teaching process.       

Programme content

  The lectures familiarize the students with examples of existing distributed systems, their most

important and salient characteristics decisive for their specificity and the reasons for their development.

Then, the fundamental concepts and definition of distributed computing are presented: distributed and

sequential processes along with their formal models, the execution and the history of the execution,

then the concepts related to the process activity, activation condition and classical request models. The

formal definition of communication channels are introduced, together with other related concepts, such

as communication operations or predicates describing the channel state.

 Lecture continues with presentation of differences between synchronous and asynchronous

communication. Different topologies of distributed computaton are presented, along with

characteristics of distributed computing. Students learn about concepts such as Lamport’s happened-

before relation, space-time diagrams, reachable state graphs and nondeterminism inherent in

distributed computation.

 Students learn about issues related to the logical (virtual) time and its possible realisation with

algorithms of Lamports (scalar clocks) and Mattern (vector logical clocks). The problem of correctness of

distributed algorithms is discussed (progress/liveness and safety properties). Lecture then introduces

the analysis of formal time and communication complexity for distributed algorithms.

 The next problem discussed during the lectures is the fundamental problem of consistent global state

snapshot. The basic definitions are first presented (configuration, cut, consistent cut and configuration).

The possible uses for consistent snapshots are discussed, such as evaluation of global predicates.

Students find out about problems involved in consistent snapshot construction in an asynchronous

system. Finally, the algorithms constructing consistent snapshots of global state are presented, including

Chandy-Lamport’s for FIFO channels and Lai-Yang’s for non-FIFO channels.

 In subsequent part the reliability of distributed systems and algorithms is shortly discussed. Failure

models are defined and the abstract notion of failure detector is introduced. The example

implementation sof failure detectors of given characteristics are presented, together with necessary

conditions for the implementation correctness. The methods providing abstract reliable communication

channels based unreliable physical channels are discussed. The methods for reliable group

communication are presented, using failure detectors with different properties.

 Lecture also sketches the issues and problems involved with achieving consensus in a distributed

5

system. The impossiblity of achieving consensus in fully asynchronous system in the presence of failures

is presented first. Then it is shown how consensus might be achieved with certain additional

assumptions (properties of available failure detectors).

 The lecture contains also short introduction of the problem of termination detection in distributed

systems. It introduces relevant definitions (e.g. the static and dynamic termination) and presents

numerous algorithms solving the problem for the systems based on different models and with different

topologies.

For most of the presented algorithms their correctness and formal complexity are analysed.

 During the laboratory classes students familiarize with two environments for development of

distributed applications: MPI library and, optionally, PVM. Students acquire the ability to use the proper

tools and then they implement some of the algorithms presented during the lectures: they implement

logical clocks, try to construct consistent snapshot of simplified distributed computation. They also

create the programs for solving simple problems: breaking passwords using brute force approach and

calculating π using Monte Carlo method. Finally students are assigned chosen classical problem, usually

distributed mutual exclusion. They implement the assigned algorithms, individually or in pairs. They

have to present the algorithm and discuss its correctness.

Each laboratory consists of problem presentation, group discussion an then implementation. The lecture

is supplemented by introducing distributed mutua exclusion problem.

   

Teaching methods

   1. Lecture: multimedia presentation, solving tasks, group discussion, presentation illustrated with

problems sketched on a blackboard.

 2. Laboratory class: task solving, practical „hands-on” exercises, group discussusion, team work,

multimedia presentation.       

Bibliography

Basic

 1. Distributed Algorithms, N. Lynch, Morgan Kaufmann Publishers, 1996C

2. Ocena stanu globalnego w systemach rozproszonych, J. Brzeziński, Ośrodek Wydawnictw Naukowych,

2001

3. Programowanie współbieżne i rozproszone w przykładach i zadaniach, Z. Weiss, T. Gruźlewski, WNT,

1993

4. Programowanie równoległe i rozproszone, A. Karbowski (red.) E. Niewiadomska-Szynkiewicz (red.),

Oficyna Wy-dawnicza Politechniki Warszawskiej, 2009

5. Introduction to Reliable and Secure Distributed Programming, C. Cachin, L. Rodrigues, R. Guerraoui,

Springer-Verlag 2011    

    

Additional

1. Distributed Algorithms and Protocols, M. Raynal, John Wiley & Sons, 1988

6

2. Systemy rozproszone: podstawy i projektowanie, G. Coulouris, J. Dollimore, T. Kindberg,

Wydawnictwo Naukowo-Techniczne, 1998

3. Distributed Computing: Principles, Algorithms, and Systems, A. D. Kshemkalyani, M. Singhal,

Cambridge University Press, 2011

4. Distributed Systems: An Algorithmic Approach, S. Ghosh, Chapman and Hall/CRC 2006

5. Podstawy programowania współbieżnego i rozproszonego, M. Ben-Ari, Wydawnictwo Naukowo

Techniczne, 1990

6. Distributed computing. Fundamentals, Simulations and Advanced Topics, Attiya H., Welch J. John

Wiley & Sons, 2004   

  

Breakdown of average student's workload

Hours ECTS

Total workload  72     3

Classes requiring direct contact with the teacher 32   1.5   

Student's own work (literature studies, preparation for
laboratory classes/tutorials, preparation for tests/exam, project
preparation) 1

40 1.5

1 delete or add other activities as appropriate

7

